Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 332, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734756

ABSTRACT

Histone acetylation modifications in filamentous fungi play a crucial role in epigenetic gene regulation and are closely linked to the transcription of secondary metabolite (SM) biosynthetic gene clusters (BGCs). Histone deacetylases (HDACs) play a pivotal role in determining the extent of histone acetylation modifications and act as triggers for the expression activity of target BGCs. The genus Chaetomium is widely recognized as a rich source of novel and bioactive SMs. Deletion of a class I HDAC gene of Chaetomium olivaceum SD-80A, g7489, induces a substantial pleiotropic effect on the expression of SM BGCs. The C. olivaceum SD-80A ∆g7489 strain exhibited significant changes in morphology, sporulation ability, and secondary metabolic profile, resulting in the emergence of new compound peaks. Notably, three polyketides (A1-A3) and one asterriquinone (A4) were isolated from this mutant strain. Furthermore, our study explored the BGCs of A1-A4, confirming the function of two polyketide synthases (PKSs). Collectively, our findings highlight the promising potential of molecular epigenetic approaches for the elucidation of novel active compounds and their biosynthetic elements in Chaetomium species. This finding holds great significance for the exploration and utilization of Chaetomium resources. KEY POINTS: • Deletion of a class I histone deacetylase activated secondary metabolite gene clusters. • Three polyketides and one asterriquinone were isolated from HDAC deleted strain. • Two different PKSs were reported in C. olivaceum SD-80A.


Subject(s)
Chaetomium , Histone Deacetylases , Multigene Family , Polyketides , Secondary Metabolism , Chaetomium/genetics , Chaetomium/enzymology , Chaetomium/metabolism , Secondary Metabolism/genetics , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Polyketides/metabolism , Gene Deletion , Gene Expression Regulation, Fungal , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Biosynthetic Pathways/genetics , Epigenesis, Genetic
2.
Front Public Health ; 12: 1374977, 2024.
Article in English | MEDLINE | ID: mdl-38560432

ABSTRACT

Objective: This study aimed to assess the prevalence of post-traumatic stress disorder (PTSD) and its influencing factors among intern nursing students after the full liberalization of the COVID-19 prevention and control policy in China. Methods: Participants completed the online survey from January 14 to January 19, 2023. A demographic questionnaire, COVID-19 and internship-related questionnaire, the Fear of COVID-19 scale, the Primary Care PTSD Screen, and the Connor-Davidson Resilience Scale were used to conduct the online survey. Results: Of 438 participants, 88.4% tested positive for COVID-19 in the last 6 months. The prevalence of fear, resilience, and PTSD was 16.9, 15.5, and 11.2%, respectively. Direct care of COVID patients in hospital (OR = 2.084, 95%CI 1.034 ~ 4.202), the experience of occupational exposure (OR = 2.856, 95%CI 1.436 ~ 5.681), working with an experienced team (OR = 2.120, 95%CI 1.070 ~ 4.198), and fear COVID-19 (OR = 8.269, 95%CI 4.150 ~ 16.479) were significantly and positively associated with PTSD in nursing internship students. Conclusion: After COVID-19 full liberalization in China, intern nursing students still experienced pandemic-related mental distress, which can bring PTSD. Adequate support and counseling should be provided, as needed, to intern nursing students who are about to enter the workforce and have experienced severe PTSD symptoms related to COVID-19. Our findings indicated that should understand the importance of screening, formulate intervention strategies and preventive measures to address psychosocial problems, and provide coping skills training to intern nursing students.


Subject(s)
COVID-19 , Psychological Tests , Stress Disorders, Post-Traumatic , Students, Nursing , Humans , Stress Disorders, Post-Traumatic/epidemiology , Cross-Sectional Studies , Prevalence , COVID-19/epidemiology , China/epidemiology , Resilience, Psychological
3.
Noncoding RNA Res ; 9(3): 649-658, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38577022

ABSTRACT

In recent years, various long non-coding RNAs (lncRNAs) involved in DNA damage response (DDR) have been identified and studied to deepen our understanding. However, there are rare reports on the association between lncRNAs and base excision repair (BER). Our designed DNA microarray identified dozens of functionally unknown lncRNAs, and their transcription levels significantly increased upon exposure to DNA damage inducers. One of them, named LIP (Long noncoding RNA Interacts with PARP-1), exhibited a significant alteration in transcription in response to methyl methanesulfonate (MMS) and temozolomide (TMZ) treatments. LIP knockdown or knockout cell lines are sensitive to MMS and TMZ, indicating that LIP plays a crucial role in DDR. The loss or insufficiency of LIP significantly influences the efficiency of BER in human cells, and it suggests that LIP participates in the BER pathway. The interaction between LIP and a key factor in BER, poly (ADP-ribose) polymerase 1 (PARP-1), has been confirmed. We identified and characterized LIP, a lncRNA, which is involved in DDR, significantly influences BER efficiency, and interacts with the BER key factor PARP-1. This advances our understanding of the connection between lncRNAs and BER, presenting the potential for the discovery of new drug targets.

4.
J Cancer Res Ther ; 20(2): 736-738, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38687947

ABSTRACT

ABSTRACT: Gastrointestinal bleeding is a common clinical symptom. Finding the underlying cause is the first step for treatment. In a few patients, this can be difficult. The present work reports on the unusual case of a 53-year-old man who presented gastrointestinal bleeding. No bleeding site was found by gastrocolonoscopy or interventional examination, but after multidisciplinary consultation, we discovered that the cause of gastrointestinal bleeding was the obstruction of the upper mesenteric vein.


Subject(s)
Gastrointestinal Hemorrhage , Mesenteric Veins , Humans , Male , Middle Aged , Gastrointestinal Hemorrhage/etiology , Gastrointestinal Hemorrhage/diagnosis , Mesenteric Veins/pathology , Mesenteric Veins/diagnostic imaging , Tomography, X-Ray Computed
5.
PLoS One ; 19(4): e0302361, 2024.
Article in English | MEDLINE | ID: mdl-38687802

ABSTRACT

Growing evidence has increasingly suggested a potential linkage between the oral microbiome and various diseases, including pancreatic ductal adenocarcinoma (PDAC). However, the utilization of gene-level information derived from the oral microbiome for diagnosing PDAC remains unexplored. In this study, we sought to investigate the novel potential of leveraging genomic signatures associated with antibiotic resistance genes (ARGs) within the oral microbiome for the diagnosis of PDAC. By conducting an analysis of oral microbiome samples obtained from PDAC patients, we successfully identified specific ARGs that displayed distinct sequence abundance profiles correlated with the presence of PDAC. In the healthy group, three ARGs were found to be enriched, whereas 21 ARGs were enriched in PDAC patients. Remarkably, these ARGs from oral microbiome exhibited promising diagnostic capabilities for PDAC (AUROC = 0.79), providing a non-invasive and early detection method. Our findings not only provide novel modal data for diagnosing PDAC but also shed light on the intricate interplay between the oral microbiome and PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Microbiota , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/microbiology , Pancreatic Neoplasms/diagnosis , Microbiota/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/microbiology , Carcinoma, Pancreatic Ductal/diagnosis , Female , Male , Mouth/microbiology , Middle Aged , Drug Resistance, Microbial/genetics , Aged , Genomics/methods
6.
Small ; : e2309476, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38348999

ABSTRACT

Complex wound repair due to tumor recurrence and infection following tumor resection presents significant clinical challenges. In this study, a bifunctional nanocomposite immune hydrogel dressing, SerMA-LJC, is developed to address the issues associated with repairing infected damaged tissues and preventing tumor recurrence. Specifically, the immune dressing is composed of methacrylic anhydride-modified sericin (SerMA) and self-assembled nanoparticles (LJC) containing lonidamine (Lon), JQ1, and chlorine e6 (Ce6). In vitro and in vivo experiments demonstrate that the nanocomposite hydrogel dressing can trigger immunogenic cell death (ICD) and has a potent anti-tumor effect. Moreover, this dressing can mitigate the acidic microenvironment of tumor cells and suppress the overexpression of PD-L1 on the tumor cell surface, thereby altering the immunosuppressive tumor microenvironment and augmenting the anti-tumor immune response. Further, the RNA sequencing analysis revealed that the hydrogel dressing significantly impacts pathways associated with positive regulation of immune response, apoptotic process, and other relevant pathways, thus triggering a potent anti-tumor immune response. More importantly, the dressing generates a substantial amount of reactive oxygen species (ROS), which can effectively kill Staphylococcus aureus and promote infectious wound healing. In conclusion, this dual-function nanocomposite immune hydrogel dressing exhibits promise in preventing tumor recurrence and promoting infectious wound healing.

7.
Foods ; 13(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38397519

ABSTRACT

Frozen staple food, attributed to its favorable taste and convenience, has a promising development potential in the future. Frequent freezing and thawing, however, will affect its quality. This study simulated several freeze-thaw cycles (FTC) that may occur during the cold chain process of frozen oatmeal cooked noodles (FOCN) production to consumption. The quality changes and their mechanisms were elucidated using methods such as differential scanning calorimetry (DSC), low-field nuclear magnetic resonance (LF-NMR), Fourier-transform infrared spectroscopy (FTIR), confocal laser scanning microscopy (CLSM), texture analysis, and sensory evaluation. The freezable water content of the FOCN decreased because of the FTC treatment, and the relative content of total water in FOCN also decreased accordingly. The increase in ß-Turn after FTC induced disorder in the secondary structure of proteins, causing the protein microstructure to become loose and discontinuous, which in turn reduced the water-holding capacity of FOCN. Additionally, FTC reduced the chewiness and sensory score of FOCN. This research will contribute a theoretical foundation for optimizing the cold chain process.

8.
J Funct Biomater ; 15(2)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38391890

ABSTRACT

Since chondrocytes are highly vulnerable to oxidative stress, an anti-oxidative bioink combined with 3D bioprinting may facilitate its applications in cartilage tissue engineering. We developed an anti-oxidative bioink with methacrylate-modified rutin (RTMA) as an additional bioactive component and glycidyl methacrylate silk fibroin as a biomaterial component. Bioink containing 0% RTMA was used as the control sample. Compared with hydrogel samples produced with the control bioink, solidified anti-oxidative bioinks displayed a similar porous microstructure, which is suitable for cell adhesion and migration, and the transportation of nutrients and wastes. Among photo-cured samples prepared with anti-oxidative bioinks and the control bioink, the sample containing 1 mg/mL of RTMA (RTMA-1) showed good degradation, promising mechanical properties, and the best cytocompatibility, and it was selected for further investigation. Based on the results of 3D bioprinting tests, the RTMA-1 bioink exhibited good printability and high shape fidelity. The results demonstrated that RTMA-1 reduced intracellular oxidative stress in encapsulated chondrocytes under H2O2 stimulation, which results from upregulation of COLII and AGG and downregulation of MMP13 and MMP1. By using in vitro and in vivo tests, our data suggest that the RTMA-1 bioink significantly enhanced the regeneration and maturation of cartilage tissue compared to the control bioink, indicating that this anti-oxidative bioink can be used for 3D bioprinting and cartilage tissue engineering applications in the future.

9.
Mater Today Bio ; 24: 100922, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38226011

ABSTRACT

Trabeculectomy is the primary surgical approach used to treat glaucoma, but scarring of the filtering passage (filtering bleb) after surgery often leads to treatment failure. To address this issue, we have developed a drug release system called RSG/Pd@ZIF-8 PHBV film. This system enables the sustained release of an anti-fibrosis drug, aiming to prevent scarring. In vitro, the film has the function of continuous Rosiglitazone (RSG) release, with accelerated release after laser irradiation. The antibacterial experiments revealed that the film exhibited antibacterial rates of 87.0 % against E.coli and 97.1 % against S.aureus, respectively. Moreover, we confirmed its efficacy in a rabbit eye model undergoing trabeculectomy. After implantation of the film, we observed a prolonged postoperative period for reducing intraocular pressure (IOP), increased survival rate of filtering blebs, and improved long-term surgical outcomes in vivo. Additionally, the film exhibited excellent biosafety. In summary, the designed sustained-release film in this study possesses the aforementioned functionalities, allowing for the regulation of anti-scarring drug release without causing harm post-surgery. This personalized and precise anti-scarring strategy represents a significant advancement.

10.
Mater Today Bio ; 23: 100875, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38075251

ABSTRACT

Complete and rapid healing of infected skin wounds remains a challenge in current clinical treatment. In this study, we prepared a self-healing injectable CK hydrogel by crosslinking two natural polysaccharides, carboxymethyl chitosan and oxidized konjac glucomannan, based on the Schiff base bond. To enhance the biological function of the hydrogel, we multi-functionalized hydrogen by loading it with berberine (BBR) and stem cell-derived exosomes (Exo), forming a composite hydrogel, CK@BBR&Exo, which could be injected directly into the wound through a needle and adhered to the wound. Furthermore, the self-healing properties of CK@BBR&Exo increased its usefulness and service life. Additionally, the drug-loaded CK@BBR&Exo hydrogel was versatile, inhibiting bacterial growth, regulating the inflammatory response, and promoting neovascularization in infected skin wounds, thus achieving the rapid healing of infected skin wounds. These results suggest that the CK@BBR&Exo-injectable self-healing hydrogel is an ideal dressing for treating infected skin wounds.

11.
Biomedicines ; 11(12)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38137512

ABSTRACT

(1) Background: Osteoarthritis (OA) is a crippling condition characterized by chondrocyte dedifferentiation, cartilage degradation, and subsequent cartilage defects. Unfortunately, there is a lack of effective medicines to facilitate the repair of cartilage defects in OA patients. In this study, we investigated the role of lncRNA NEAT1_2 in maintaining the chondrocyte phenotype and identified tanshinone IIA(TAN) as a natural medicine that enhances NEAT1_2 levels, resulting in efficient cartilage regeneration under inflammatory cytokines. (2) Methods: The transcriptional levels of NEAT1_2 and cartilage phenotype-related genes were identified by RT-qPCR. The siRNA interference approach was utilized to silence NEAT1_2; the Alamar Blue assay was performed to determine chondrocyte viability under inflammatory conditions. To evaluate the concentrations of collagen type II and glycosaminoglycans distributed by chondrocytes in vitro and in vivo, immunohistochemical staining and Safranin O staining were used. (3) Results: IL-1ß suppresses NEAT1_2 and genes related to the chondrocytic phenotype, whereas TAN effectively upregulates them in a NEAT1_2-dependent manner. Consistently, TAN alleviated chondrocyte oxidative stress inhibited cartilage degradation by modulating the relevant genes and promoted efficient cartilage regeneration in vitro and in vivo when chondrocytes are exposed to inflammatory cytokines. (4) Conclusions: TAN enhances the expression of NEAT1_2 inhibited by IL-1ß and affects the transcription of chondrocytic phenotype-related genes, which promotes cartilage regeneration in an inflammatory environment.

12.
J Adv Res ; 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37956862

ABSTRACT

INTRODUCTION: Global warming is increasing interest in how aquatic animals can adjust their physiological performance and cope with temperature changes. Therefore, understanding the behavioral changes and molecular underpinnings in fish under warming is crucial for both the individual and groups survival. This could provide experimental evidence and resource for evaluating the impact of global warming. OBJECTIVE: Three genetic families of common carp (Cyprinus carpio) were generated. These juveniles were constructed short-term (4 days) and long-term (30 days) warming groups to investigate the effects of warming on behavioral responses and to elucidate the potential underlying mechanisms of warming-driven behavior. METHODS: Behavioral tests were used to explore the effects of short- and long-term exposure to warming on the swimming behavior of C. carpio. Brain transcriptome combined with measurement of nervous system activity was used to further investigated the comprehensive neuromolecular mechanisms under warming. RESULTS: Long-term warming groups had a more significant impact on the decline of swimming behavior in juvenile C. carpio. Furthermore, brain comparative transcriptomic analysis combined with measurement of nervous system activity revealed that genes involved in cytoskeletal organization, mitochondrial regulation, and energy metabolism are major regulators of behavior in the juvenile under warming. Importantly, especially in the long-term warming groups, enrichment analysis of associated gene expression suggested functional alterations of synaptic transmission and signal transduction leading to swimming function impairment in the central nervous system, as revealed by behavioral tests. CONCLUSIONS: Our study provides evidence of the neurogenomic mechanism underlying the decreased swimming activity in juvenile C. carpio under warming. These findings have important implications for understanding the impacts of climate change on aquatic ecosystems and the organisms that inhabit them.

13.
Cureus ; 15(9): e44848, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809163

ABSTRACT

Aim/Objective Within the dynamic healthcare technology landscape, this research aims to explore patient inquiries within outpatient clinics, elucidating the interplay between technology and healthcare intricacies. Building upon the initial intelligent guidance robot implementation shortcomings, this investigation seeks to enhance informatic robots with voice recognition technology. The objective is to analyze users' vocal patterns, discern age-associated vocal attributes, and facilitate age differentiation through subtle vocal nuances to enhance the efficacy of human-robot communication within outpatient clinical settings. Methods This investigation employs a multi-faceted approach. It leverages voice recognition technology to analyze users' vocal patterns. A diverse dataset of voice samples from various age groups was collected. Acoustic features encompassing pitch, formant frequencies, spectral characteristics, and vocal tract length are extracted from the audio samples. The Mel Filterbank and Mel-Frequency Cepstral Coefficients (MFCCs) are employed for speech and audio processing tasks alongside machine learning algorithms to assess and match vocal patterns to age-related traits. Results The research reveals compelling outcomes. The incorporation of voice recognition technology contributes to a significant improvement in human-robot communication within outpatient clinical settings. Through accurate analysis of vocal patterns and age-related traits, informatic robots can differentiate age through nuanced verbal cues. This augmentation leads to enhanced contextual understanding and tailored responses, significantly advancing the efficiency of patient interactions with the robots. Conclusion Integrating voice recognition technology into informatic robots presents a noteworthy advancement in outpatient clinic settings. By enabling age differentiation through vocal nuances, this augmentation enhances the precision and relevance of responses. The study contributes to the ongoing discourse on the dynamic evolution of healthcare technology, underscoring the complex synergy between technological progression and the intricate realities within healthcare infrastructure. As healthcare continues to metamorphose, the seamless integration of voice recognition technology marks a pivotal stride in optimizing human-robot communication and elevating patient care within outpatient settings.

14.
New Phytol ; 240(3): 1116-1133, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37608617

ABSTRACT

The regulatory framework of leaf senescence is gradually becoming clearer; however, the fine regulation of this process remains largely unknown. Here, genetic analysis revealed that U2 small nuclear ribonucleoprotein B (U2B″), a component of the spliceosome, is a negative regulator of leaf senescence. Mutation of U2B″ led to precocious leaf senescence, whereas overexpression of U2B″ extended leaf longevity. Transcriptome analysis revealed that the jasmonic acid (JA) signaling pathway was activated in the u2b″ mutant. U2B″ enhances the generation of splicing variant JASMONATE ZIM-DOMAIN 9ß (JAZ9ß) with an intron retention in the Jas motif, which compromises its interaction with CORONATINE INSENSITIVE1 and thus enhances the stability of JAZ9ß protein. Moreover, JAZ9ß could interact with MYC2 and obstruct its activity, thereby attenuating JA signaling. Correspondingly, overexpression of JAZ9ß rescued the early senescence phenotype of the u2b″ mutant. Furthermore, JA treatment promoted expression of U2B″ that was found to be a direct target of MYC2. Overexpression of MYC2 in the u2b″ mutant resulted in a more pronounced premature senescence than that in wild-type plants. Collectively, our findings reveal that the spliceosomal protein U2B″ fine-tunes leaf senescence by enhancing the expression of JAZ9ß and thereby attenuating JA signaling.

15.
Int J Biol Macromol ; 250: 126104, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37536412

ABSTRACT

Since inflammatory cytokines cause stress to chondrocytes and the failure of cartilage defects repair with cartilage tissue engineering, it is necessary to develop a scaffold to maintain cartilage regeneration under inflammatory factors caused stress. Following a berberine-oleanolic acid (OA) complex salt (BOA) was grafted to hyaluronic acid (HA) to obtain water soluble BOA-g-HA, it mixed with silk fibroin (SF) to prepared 4 solutions, which contained 30 mg/mL SF and 0.75, 1.5, 2.25, and 3.0 mg/mL BOA-g-HA respectively. They were lyophilized to fabricate BOA-g-HA/SF-1, BOA-g-HA/SF-2, BOA-g-HA/SF-3, and BOA-g-HA/SF-4 composite scaffolds respectively. All prepared scaffolds displayed porous network structure and exhibited promising mechanical properties for tissue engineering applications. Among them, the BOA-g-HA/SF-3 composite scaffold showed the highest influence on maintaining chondrocytic phenotype of chondrocytes under IL-1ß induced stress. Following SF, HA/SF, and BOA-g-HA/SF-3 composite scaffolds with seeded chondrocytes were treated with IL-1ß induction for 1 week, specimens were incubated with cell culture medium for 3 week or were subcutaneously implanted into nude mice for 4 weeks. The results demonstrated that the BOA-g-HA/SF-3 composite scaffold promotes cartilage tissue regeneration in vitro and in vivo under IL-1ß caused stress, suggesting that it can be potential applied for repairing cartilage defects in osteoarthritis patients.


Subject(s)
Berberine , Fibroins , Oleanolic Acid , Mice , Animals , Humans , Fibroins/pharmacology , Fibroins/chemistry , Hyaluronic Acid/pharmacology , Hyaluronic Acid/chemistry , Tissue Scaffolds/chemistry , Oleanolic Acid/pharmacology , Mice, Nude , Cartilage , Tissue Engineering/methods
16.
Medicine (Baltimore) ; 102(30): e34499, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37505149

ABSTRACT

Matrix metalloproteinase 9 (MMP9), a zinc ion-dependent endopeptidase, is one of the most complex matrix metalloproteinases in the gelatinase family. During tissue remodeling, MMP9 leads to gelatin and collagen degradation, which in turn promotes tumor invasion and metastasis. However, comprehensive pan-cancer analysis has not been performed for MMP9. In addition, the diagnostic and prognostic value of MMP9 as a cancer biomarker remain poorly understood, as well as the utility of MMP9 expression as a predictor of immunological responses. Based on a comprehensive analysis of bioinformatics information, we investigated MMP9 expression in different cancers, correlations between MMP9 expression and cancer prognosis and gene mutations, and relationships between MMP9 expression and immune cell infiltration. Our results indicated that MMP9 was highly expressed in most malignant cancers. MMP9 expression was significantly positively or negatively associated with the clinical prognoses of patients with different kinds of cancer. Furthermore, MMP9 expression significantly correlated with infiltrating cells and the expression levels of immune checkpoint genes. This pan-cancer analysis provides comprehensive information on the potential value of MMP9 as a theranostic biomarker.


Subject(s)
Matrix Metalloproteinase 9 , Neoplasms , Humans , Prognosis , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Neoplasms/genetics
17.
Int J Bioprint ; 9(5): 768, 2023.
Article in English | MEDLINE | ID: mdl-37457941

ABSTRACT

Three-dimensional (3D) bioprinting provides a promising strategy for tissue and organ engineering, and extracellular matrix (ECM)-derived bioinks greatly facilitate its applications in these areas. Decellularized sturgeon cartilage ECM (dSC-ECM)-derived bioinks for cartilage tissue engineering were fabricated with methacrylate-modified dSC-ECM (dSC-ECMMA) and sericin methacrylate (SerMA), which optimizedthe mechanical properties of their solidified hydrogels.dSC-ECM induces chondrocytes to form cell clusters and subsequently reduces their proliferation, but the proliferation of encapsulated chondrocytes was normal in solidified dSC-ECM-5 bioink samples, which contain 5 mg/mL dSC-ECMMA. Hence, this bioink was selected for further investigation. Lyophilized dSC-ECM-5 hydrogels showed connected pore microstructure, which is suitable for cell migration and nutrients transportation. ThisdSC-ECM-5 bioink exhibited high fidelity and good printability by testing via a 3D bioprinting system, and the chondrocytes loaded in printed hydrogel products were viable and able to grow, following incubation, in the cell culture medium. Solidified dSC-ECM-5 and SerMA bioinks loaded with chondrocytes were subcutaneously implanted into nude mice for 4 weeks to test the suitability of the bioink for cartilage tissue engineering. Compared to the SerMA bioink, the dSC-ECM-5 bioink significantly enhanced cartilage tissue regeneration and maturation in vivo, suggesting the potential of this bioink to be applied in cartilage tissue engineering in the future.

18.
Int J Mol Sci ; 24(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37298196

ABSTRACT

Leaf senescence is a complex biological process regulated at multiple levels, including chromatin remodeling, transcription, post-transcription, translation, and post-translational modifications. Transcription factors (TFs) are crucial regulators of leaf senescence, with NAC and WRKY families being the most studied. This review summarizes the progress made in understanding the regulatory roles of these families in leaf senescence in Arabidopsis and various crops such as wheat, maize, sorghum, and rice. Additionally, we review the regulatory functions of other families, such as ERF, bHLH, bZIP, and MYB. Unraveling the mechanisms of leaf senescence regulated by TFs has the potential to improve crop yield and quality through molecular breeding. While significant progress has been made in leaf senescence research in recent years, our understanding of the molecular regulatory mechanisms underlying this process is still incomplete. This review also discusses the challenges and opportunities in leaf senescence research, with suggestions for possible strategies to address them.


Subject(s)
Arabidopsis , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Senescence , Plant Leaves/genetics , Plant Leaves/metabolism , Arabidopsis/metabolism , Crops, Agricultural/metabolism , Gene Expression Regulation, Plant
19.
Front Psychiatry ; 14: 1171425, 2023.
Article in English | MEDLINE | ID: mdl-37265559

ABSTRACT

Objective: To investigate the effect of changes in campus living conditions related to the Corona Virus Disease 2019 (COVID-19) pandemic on medical school students' mental health status, to explore the mediating role of emotion regulation strategies, and to provide effective suggestions for promoting medical school students' mental health. Methods: A self-report questionnaire, an emotion regulation questionnaire (ERQ), and psychological questionnaires for emergent events of public health (PQEEPH) were used to interview 998 medical school students who experienced campus lockdowns during the COVID-19 pandemic. Results: The mean total PQEEPH score was 3.66 ± 3.06. The degrees of inconvenience in daily life and change in routine and expression suppression as an emotion regulation strategy were significantly positively correlated with all PQEEPH dimensions. Cognitive reappraisal was significantly negatively associated with depression, neurosis, obsessive-compulsive anxiety, and hypochondriasis (ps < 0.05). Cognitive reappraisal and expression suppression demonstrated a chain mediating role between the degree of inconvenience in life and mental health and between the degree of change in routine and mental health (F = 32.883, 41.051, ps < 0.05). Conclusion: Campus lockdown management significantly impacts medical school students' mental health. Extensive use of cognitive reappraisal and expression suppression can reduce students' adverse psychological reactions during campus lockdowns to an extent.

20.
Nat Commun ; 14(1): 3063, 2023 05 27.
Article in English | MEDLINE | ID: mdl-37244910

ABSTRACT

Light-based 3D bioprinting is now employed widely to fabricate geometrically complex constructs for various biomedical applications. However, the inherent light scattering defect creates significant challenges in patterning dilute hydrogels to form high-fidelity structures with fine-scale features. Herein, we introduce a photoinhibiting approach that can effectively suppress the light scattering effect via a mechanism of simultaneous photoabsorption and free-radical reaction. This biocompatible approach significantly improves the printing resolution (~1.2 - ~2.1 pixels depending on swelling) and shape fidelity (geometric error less than 5%), while minimising the costly trial-and-error procedures. The capability in patterning 3D complex constructs using different hydrogels is demonstrated by manufacturing various scaffolds featuring intricate multi-sized channels and thin-walled networks. Importantly, cellularised gyroid scaffolds (HepG2) are fabricated successfully, exhibiting high cell proliferation and functionality. The strategy established in this study promotes the printability and operability of light-based 3D bioprinting systems, allowing numerous new applications for tissue engineering.


Subject(s)
Bioprinting , Tissue Scaffolds , Tissue Scaffolds/chemistry , Bioprinting/methods , Printing, Three-Dimensional , Tissue Engineering/methods , Hydrogels/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...